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Abstract. An experiment is described for the generation and detection of High-Frequency Gravitational Waves 
(HFGWs) in the laboratory utilizing acoustic piezoelectric resonators for generation, and coupled resonance chambers 
for detection. Film Bulk Acoustic Resonators or FBARs (similar to those utilized in commercial cellular telephones) 
energized by magnetrons (similar to those utilized in microwave ovens) are distributed in a ring-shaped array several 
hundred meters in diameter. The magnetrons are phase locked and are sufficient in number to energize millions of 
FBARs fabricated on thousands of wafers. The FBARs produce jerks (time rate of change of acceleration or a third 
time derivative motion imparted to their electrode masses) at a frequency of 2.45GHz. The resulting 4.9GHz HFGW is 
focused at the center of a segmented or asymmetrical ring of FBARs and is concentrated there by a high-temperature 
superconductor (HTSC) to generate a HFGW flux on the order of 17mW m–2 to 7W m–2. A miniature version of an 
existing HFGW detector designed at INFN Genoa, Italy, consisting of a pair of coupled HTSC-surfaced resonance 
chambers (about one centimeter in diameter) will be situated in the middle, having their axes perpendicular to the plane 
of the ring of FBARs. Alternatively, a resonance-loop chamber detector, similar to that developed at Birmingham 
University, U.K., could be utilized. Details of the experiment and challenges to be met in its design as well as 
applications to space technology are discussed. 

 
 

INTRODUCTION 
 
In order to understand gravitational waves, consider first water waves. These waves are disturbances or undulations 
on or in a medium: the water. They exhibit an amplitude or height and a frequency that is dependent on the time 
between the passages of wave crests past some fixed point. They can be sensed, for example, by the motion of a 
buoy or leaf on the water’s surface. Sound waves propagate as compressions and rarefactions in a gas medium – 
usually air. They have amplitude according to the pressure difference of the compressions and rarefactions and a 
frequency that is related to the time between adjacent wave pressure crests. They can be sensed by, for example, the 
motion of a diaphragm in a microphone. Electromagnetic (EM) waves like radio, microwaves, light, or X-rays 
depend upon the propagation of variations in an EM field that also exhibit a frequency like other waves, but they 
propagate at a constant speed, c ≈ 3×108m s–1 or the “speed of light.” Also there is no true medium for EM waves. 
Such EM waves can be sensed by, for example, the motion of electrons in a photocell. Einstein (1915) theorized a 
revolutionary space-time fabric or continuum in his general theory of relativity. He called the undulations or waves 
propagating in this fabric “gravitational waves” (Einstein, 1916). He theorized that they propagate at the speed of 
light and could be generated, for example, by orbiting stars, spinning rods, or dumbbells. Gravitational waves 
(GWs) can be sensed by, for example, the change in lengths measured by extremely sensitive interferometers, 
piezoelectric crystals, superconductors, or resonance chambers. They have never been directly sensed, however, and 
some scientists believed that these waves were unobservable artefacts of Einstein’s theory. The indirect evidence 
obtained by Taylor (1994) and R.A. Hulse concerning their observations of a contracting binary star pair or pulsar 
PSR 1913+16, which perfectly matched Einstein’s GW theory, garnered them the 1993 Nobel Prize and skepticism 
concerning GWs evaporated. According to a set of definitions provided by Hawking and Israel (1979), High-
Frequency Gravitational Waves (HFGWs) have frequencies in excess of 100 kHz and have the most promise for 
terrestrial generation and practical, scientific and commercial applications. Low-Frequency Gravitational Waves 
(LFGWs) typically generated by most astrophysical sources are expected to be detected by interferometric and 



 
 

resonance devices whose technology is totally different from the technology of high-frequency detector devices – as 
different as AC-motor technology is from microwave-transmitter technology. Thus LFGW detectors such as LIGO, 
VIRGO, LISA, DECIGO (Japan), and CEGO (China) are useless for HFGW detection.  

Since 2001, studies of HFGWs have intensified, including generation, detection, and engineering application. In 
2003 the first meeting of the International High-Frequency Gravitational Waves Working Group, sponsored by 
MITRE Corporation, McLean (VA), was held (Baker, 2003a). This conference attracted 25 scientific papers from 
nine countries, and discussed many HFGW concepts. It also displayed the strong international activity in this area.  
 
 

SIGNIFICANCE OF HFGW GENERATION 
 
There has never been any significant effort to generate and detect gravitational waves in the laboratory since only 
the theory has been considered so far. The experiment proposed here will lead to revolutionary ways in which space 
propulsion and communication are accomplished 10 to 40 years from now. Remote HFGW generators will modify 
the gravitational field near an object or spacecraft: “Since it has definite energy, the gravitational wave is itself the 
source of some additional gravitational field…its field is a second-order effect…But in the case of high-frequency 
gravitational waves the effect is significantly strengthened…” (Landau and Lifshitz, 1975, p. 349). Thus it is 
possible to change the gravitational field near an object by means of HFGWs and move or perturb it. And, thus 
there exists a completely new means to propel a spacecraft. The significance of such propellantless propulsion has 
been considered by many authors. HFGW generators may also be used as a completely new means of space 
communication. T.A. Prince (2002) recently commented: “Of the applications (of HFGWs), communication would 
seem to be the most important. Gravitational waves have a very low cross section for absorption by normal matter 
and therefore high-frequency waves could, in principle, carry significant information content with effectively no 
absorption unlike any electromagnetic waves.” Such a HFGW communication system would represent the ultimate 
wireless system – point-to-multipoint PHz communication without the need for expensive enabling infrastructure, 
that is, no need for fiber-optic cable, satellite transponders, or microwave relays.  
 
 

PROPOSED GENERATOR CONCEPT 
 
The concept proposed here is to generate and detect HFGWs in the laboratory using a novel arrangement of Film 
Bulk Acoustic Resonators (FBARs). They will be energized by phase locked magnetrons similar to those utilized in 
ordinary microwave ovens. The magnetrons must all be phase-locked; it is proposed to achieve this using a similar 
approach to that in phased array antenna designs (Gordon, 2004). The details of the derivation of the HFGW 
generation equations, summarized below, are given by Baker (2000, 2002), and the concept of generating HFGWs 
by an array of micro-devices is described by Baker (2003b, 2004). From Einstein’s General Theory of Relativity the 
power of a GW generator is given by his quadrupole equation. This equation can be written as 

P(r,∆f,∆t) = 1.76×10–52(2r∆f/∆t)2 W, (1)

where r is the radius of gyration of a mass (or system of masses) in meters (about 300m to 3km for the experiment 
proposed here), ∆f is an incremental increase in force in newtons acting on a mass during an incremental time 
period ∆t in seconds, commonly referred to as a “jerk”. This is the jerk formulation of the quadrupole equation. For 
a continuous train of jerks the frequency is ν = 1/∆t, and Eq. (1) can be phrased as a function of HFGW frequency 
as 

P(r,∆f,ν) = 1.76×10–52(2rν∆f)2 W. (2)

An impractical method of generating HFGWs is to rotate a rod so that it radiates energy through this quadrupole 
HFGW generation mechanism. This is impractical because it has long been known that rotation of any material at 
sufficiently high speed for efficient HFGW generation according to Eq. (2) is impossible; at much lower rotation 
speeds than are needed for efficient HFGW generation, centrifugal force causes the rotating mass to disintegrate. 
This is the origin of the widely-held view that generation of GWs is impossible outside of astronomical bodies. The 
basic concept proposed here is to utilize piezoelectric mechanical resonators, specifically Film Bulk Acoustic 
Resonators (FBARs) similar to those utilized in cellular telephones, energized by magnetrons similar to those 
utilized in microwave ovens, to produce high frequency jerks in the vibrational elements of the FBARs and thereby 



 
 

generate HFGWs. An FBAR (Fig. 1) is a mechanical (acoustic) resonator consisting of a vibrating membrane 
(typically around 100×100µm2 in planform, and around 1µm thickness), fabricated using well-established 
integrated-circuit microfabrication technology. The vibrating membrane is actuated piezoelectrically, typically 
using aluminum nitride (AlN) as the piezoelectric excitation material. These devices have recently been highly 
developed as cost-effective RF filters mainly for use in commercial cellular telephones, in which high-Q resonators 
are needed for the typical carrier frequency band around 1.9GHz. The vibrating membrane in an FBAR will also 
form an ideal vibrating mass for the present application, at slightly higher frequency. Exploratory FBAR devices 
have been fabricated operating at frequencies up to 7.5GHz (Ruby and Merchant, 1994; Lakin et al., 2001).  

 
FIGURE 1. Basic FBAR Construction (Side View, Not to Scale). 

 
The FBARS will be arranged in a circle and each vibrating element must vibrate in phase with all the rest. In this 
way, a segmented or asymmetrical ring of masses all oscillating at the same frequency will be produced which 
reproduces the essentials of an asymmetrical toroidal mass oscillating or rotating at the same frequency, except that 
no centrifugal forces are generated so that the system will not be torn apart by centrifugal forces. The FBAR jerks 
tangential to the stationary rim are exactly analogous to jerks occurring in a solid asymmetrical toroid. The essential 
concept here is that a collection of asymmetrical rotating masses, with their attendant centrifugal-force jerks, is 
emulated by a series of fixed masses that are jerked by piezoelectric forces – energizable elements (FBARs) acted 
upon by energizing elements (magnetrons). Three important points should now be made: 

● The energizable element’s action/reaction does not cancel out during GW generation (Einstein and Rosen, 
1937), but the energizable elements should be asymmetrically distributed.  

● The acceleration can be well over 100g and the quadrupole equation will still be valid: e.g., the acceleration of 
the contracting neutron star pair or pulsar PSR 1913+16 is 112g at periastron (Baker, 2000, 2002). 

●  ∆f need not be gravitational force (Einstein, 1916; Infeld, quoted by Weber (1964, p. 97)). EM forces are ~1035 
times larger than typical gravitational forces and so will give significant advantage in laboratory GW generation. 
As Weber (1964) points out: “The nongravitational forces play a decisive role in methods for detection and 
generation of gravitational waves…”. 

The generated HFGWs must then be focused to the smallest area possible at the focal point at the center of the 
segmented or asymmetrical ring of FBARs in order to achieve a large HFGW flux (energy/area) for detection. 
Commercial microwave oven magnetrons are proposed for this experiment because of their low cost in bulk 
quantities. These typically operate at 2.45GHz. Similarly, suitable FBARs may be fabricated cheaply in large 
quantities and a small design change will produce resonance at 2.45GHz instead of the cellular telephone band at 
1.9GHz. Therefore, the operating frequency of the system will be 2.45GHz, giving a gravitational frequency ν = 
4.9GHz and a gravitational wavelength of λ = c/ν ≈ 6.1cm. The FBARs need to be accurately oriented around the 
ring, within a fraction of one HFGW wavelength, and their lines of action (i.e., of the jerks of their vibrational 
elements) must be coplanar and accurately tangential to the stationary ring to a small fraction of a HFGW 
wavelength. This means that positional accuracy within at least 1cm must be rigorously maintained. Sketches of the 
emulation of rotating masses (δm) by a circular array of FBARs are shown in Fig. 2. Fig. 2(a) depicts two masses 
from an asymmetrical toroid rotating uniformly, and Fig. 2(b) depicts a segmented or asymmetrical ring of FBARs 
(each located on a circle of radius r) that produce the same HFGW effect.  
 
 

ANALYSIS OF THE FLUX OF A HFGW GENERATOR 
 
From Landau and Lifshitz (1975, p. 356) it can be shown that the radiation pattern or specific angular intensity, I, 
for a sequentially energized ring of asymmetrically distributed energizable elements (e.g., FBARs) can be expressed 
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as 

I = Po × 7.55×10–6 (1 + 6cos2θ + cos4θ) W deg–2,  (3)

where Po is the power of the GW generator in W, and θ is the polar angle measured from the central axis 
(perpendicular to the plane of motion through the ring’s center). In three dimensions the radiation pattern looks like 
two candelabra bulbs joined at their bases, or a dumbbell. This is shown in Fig. 2(b). Coincidentally the detector 
geometry resembles a constant potential surface in this radiation pattern and this provides insights in designing new 
and different detectors tailored to specific radiation patterns. The GW flux has been computed at a “cap” on each 
side of the focus defined by a cone having an altitude A and a ±10° vertex angle intersecting the three-dimensional 
radiation pattern. The GW flux, F±10°, in either of the caps is given by 

F±10° = Po × 2.54 (0.282/A)2 W m–2 (4)

(where A = 0.282m yields a 1m2 area sphere). The closer the detector is to the focus along the central axis the better.  

 
(a)                                                                                            (b) 

FIGURE 2. Emulation of a Rotating Asymmetrical Set of Masses by a Fixed Asymmetrical Circular Array of FBARs.  
 
The HFGW power from a HFGW generator is proportional to ν2 according to Einstein’s quadrupole relation, Eq. 
(2). Li and Torr (1992) showed that a superconductor (SC) has strong GW refractive properties that may be used to 
make a lens for GWs (although this result was disputed by Kowitt (1994)). For a Gaussian beam, perfectly focused 
(convergence angle 90°), the diffraction-limited spot diameter is 2λ/π (Saleh and Teich, 1991), and so the smallest 
area into which the GW power may be focused is λ2/π on both sides of the center; the total area is therefore 2λ2/π. 
(The Gaussian diffraction formula is more nearly applicable to the present case than is the plane-wave formula.) 
Since λ2 = c2/ν2, the diffraction-limited focus area is inversely proportional to ν2, so the HFGW flux (power/area) at 
the focus is proportional to ν4. Away from the focus the flux will be significantly reduced, so the challenge is to site 
the HFGW detector as close as possible to the focus and to make the active detection surface or volume coincident 
with the diffraction-limited focus. [There may also be Fresnel reflection at the air-superconductor surfaces that 
needs to be addressed theoretically (Baker et al., 2005). This could be both detrimental if it causes excessive HFGW 
power loss at each lens surface, or advantageous if it enables reflection and refocusing of HFGW energy otherwise 
lost because it is travelling away from the detector.] Consider an aerospace communications HFGW 
generation/detection system in which the generated HFGWs are formed into a collimated beam by a HTSC lens and 
that at some distance away there is another HTSC lens to concentrate the HFGWs at the detector. The two lenses are 
diffraction-limited. The beam area of the HFGW beam due to diffraction is inversely proportional to ν2. The second 
lens concentrates the intercepted HFGWs at the detector into a diffraction-limited area, also inversely proportional 
to ν2. Therefore, the efficiency of this transmitter/receiver system is proportional to ν6 (Baker, 2000). If the detector 
is located at the focus of the HFGW generator, then the HTSC surrounding the focus concentrates the HFGWs there 
by a factor equal to the refractive index = 400 ± 200 (Li and Torr, 1992, p. 5491; Li, 2002) in each axis. The GW 



 
 

wavelength is (400 ± 200)× smaller in the HTSC and consequently the diffraction-limited spot size will be 4002× 
smaller than in free space. In this case the HFGW signal at the detector is proportional to ν4. [In fact, the efficiency 
is slightly reduced because the sensitivity of many GW detectors is proportional either to 1/√ν or to 1/ν, so the 
overall efficiency will be proportional to ν5.5, ν5, ν3.5, or ν3.] Therefore, there is an enormous advantage in working at 
the highest frequency possible.  
 
 

ESTIMATE OF PERFORMANCE OF FBARS AS HFGW GENERATORS 
 
In this section a simple model of a HFGW generator assembled from FBARs is presented. Piezoelectric excitation 
of a small acoustic (mechanical) resonator is far superior to EM excitation at frequencies above tens of kHz because 
there are no inductive losses in a typical piezoelectric device. However, the acoustic electrodes must be small so as 
not to introduce excessive capacitive loss. Existing high-performance FBARs (Ruby and Merchant, 1994; Lakin et 
al., 2001) demonstrate the feasibility of low-loss operation of this class of device around 2GHz.  

 
FIGURE 3. Simple Model of Acoustic Resonator.  

 
The basic construction of an FBAR is illustrated in Fig. 1. Accurate modelling of a membrane resonator is a difficult 
task but here a very simple analog is used to estimate the basic performance of this device as a generator of HFGW. 
First, the stored energy per FBAR is estimated. The resonance quality factor is given by the well-known result Q = 
ωo × (stored energy)/(power applied), where ωo is the resonant angular frequency, and so the stored energy is  

W = Q × (power applied)/ωo.  (5)

To calculate the force applied to one FBAR membrane, the simple model of an acoustic resonator shown in Fig. 3 is 
used here. The vibrational mode of an FBAR membrane is actually a low-order Lamb wave (Auld, 1990) although a 
simple approximation will be accurate enough for a first estimate. Mass m fixed to the end of a spring of spring 
(force) constant k oscillates at a natural angular frequency ωo = (k/m)½ = 2πνo so that  

k = ωo
2m.  (6)

Second, the energy stored in the oscillation is given by W = ½kx2 = ½(kxo)2/k = ½fo
2/k for an oscillation amplitude xo 

and maximum force fo, so that from Eq. (6) the maximum force applied to the mass is  

fo = (2Wk)½ = (2Wωo
2m)½.  (7)

Suppose the total excitation power available is Pin divided equally between N FBARs. Then the power supplied to 
each FBAR is Pin/N (assuming, of course, no loss from power distribution or phase adjusting), so that from Eq. (5) 
the stored energy per FBAR is W = QPin/(Nωo). Combining this with Eq. (7) gives the force in each FBAR  

fo = (2QPinωom/N)½.  (8)

Therefore, the total force experienced by N FBARs excited in phase is (2QPinωomN)½. Note that the total force is 
proportional to N½ rather than to N, because with more FBARs but fixed total input power Pin then the power per 
FBAR is reduced. To maximize the total force, the largest possible number of FBARs is needed, operating at the 
highest possible frequency and largest possible input power. A typical FBAR has a resonance curve with a passband 
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x 
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resonance width of 2∆ν = 24MHz at a typical passband center frequency νo = 2GHz (Lakin et al., 2001). This gives 
Q ≈ 2000/24 ≈ 100. Mass m is found from density × volume. The values density = 3000kg m–3 (typical of materials 
comprising an FBAR membrane) and volume = 100 × 100 × 1µm3 (typical of an FBAR membrane resonant at νo = 
2GHz) were estimated here, so that m = 30ng. A typical FBAR takes up rather more area than its nominal 
membrane area 100 × 100µm2 in a fabricated silicon wafer. Current silicon fabrication foundries can process 4″ 
diameter (or larger) silicon wafers as standard. From these figures it is straightforward to calculate that, at a very 
conservative estimate, 6000 (or more) FBARs may easily be fabricated on one wafer (Lakin et al., 2001). The total 
force is proportional to N½ and so the generated HFGW flux (from Eq. (2)) is proportional to (N½)2 = N.  

Suitable magnetrons giving 1kW at 2.45GHz are readily available in bulk off-the-shelf at about US$30 each, 
intended for OEM microwave oven use. FBARs are quite simple to fabricate using standard microelectronics 
procedures. For this application, custom-designed devices would be needed to match the magnetron frequency; a 
very rough estimate of their cost is US$10 per wafer (in bulk quantities). (In fact it would be economically 
advantageous to use 6″ or 8″ diameter wafers but here 4″ wafers are assumed.) To find the best distribution of 
magnetrons and FBAR wafers, note that the HFGW flux is proportional to the product (PinN); this product must be 
maximized subject to the constraint of minimum cost. This is an optimization problem and the solution is: equal 
sums should be spent on the magnetrons and on the FBAR wafers. Therefore, the optimum arrangement is to have 
each 1kW magnetron drive three 4″ FBAR wafers, assuming as an illustrative example the rough estimates of costs 
given above. This excitation corresponds to ~56mW per FBAR, well within the power-handling capacity of this 
type of device (typically ~2W per FBAR is reported by Ruby et al. (1999)).  

Suppose that US$600k, an arbitrarily chosen sum chosen purely as an example, is available for the total hardware 
cost of the magnetrons and FBAR wafers. The optimum design at this price consists of 10,000 magnetrons, costing 
US$300k, driving a total of 30,000 FBAR wafers, also costing US$300k. The magnetrons must be spaced non-
uniformly around a large circle on level ground; its radius is arbitrarily chosen here to be 300m, so that on average 
the magnetrons are spaced apart by ~19cm. Laser surveying devices would be necessary to align all the generating 
elements accurately towards the central focus within about ±1cm. Thus there would be ~1.8×108 FBARs. From Eq. 
(8), using Q = 100, Pin = 10MW, and ωo = 2π × 2.45GHz, the total force each cycle is 4×108N. The magnetron 
frequency, 2.45GHz, corresponds to a generated HFGW frequency 4.9GHz. From Eq. (2), the generated HFGW 
power is P = 250pW. The wavelength of a 4.9GHz HFGW is λ = c/ν ≈ 6.1cm, and dividing by the area of the 
diffraction-limited spot size, 2λ2/π, gives a HFGW flux of 0.1µW m–2 in free space over a detector aperture placed 
at the center of the circular generator (above or below the focus point). Using a HTSC lens at the detection aperture 
to reduce the HFGW wavelength 400× (Li and Torr, 1992), making the diffraction-limited spot area (400)2× 
smaller, gives a flux of 17mW m–2.  
 
 

INFN GENOA DETECTOR  
 
This detector has been developed by Chincarini and Gemme (2003) of INFN, Genoa, Italy, and is based upon 
coupling superconducting radio frequency (RF) cavities and exploits the parametric energy conversion between two 
EM resonant modes. The interaction of the gravitational wave with the superconducting cavity walls induces a 
motion that is sensed by the EM field stored within the cavity. The energy conversion is maximized when the 
frequency of the wave is equal to the frequency difference of the cavity resonant modes. Several such devices have 
been produced by Chincarini, Gemme, and others, proving that this approach is feasible for HFGW detection in the 
GHz range. Detection at 4.9GHz (the frequency expected in the present proposed configuration) requires a cavity 
resonance in excess of this frequency, implying overall detector dimensions on the order of ~2cm. In order to build 
a realistic detector, a suitable cavity shape has to be chosen. From quite general arguments a detector based on two 
coupled spherical cavities looks very promising (Fig. 4(a)). To match the frequency range relevant here, the mode 
splitting (i.e., the detection frequency) should cover the range 10kHz < (ω2 – ω1)/(2π) < 3GHz. The internal radius 
of the spherical cavities would be in the range 20-100mm, corresponding to a TE011 mode at frequency ω/(2π) ≈ 2-
10GHz. A tuning cell, or a superconducting bellow, will be inserted in the coupling tube between the two cavities, 
allowing variation of the coupling strength (i.e., the detection frequency) in a narrow range around the design value. 
The spherical resonators can be easily deformed in order to favor the field polarization suitable for GW detection: 
the optimal field spatial distribution is with the field axis of the two cavities orthogonal to each other (Fig. 4(b)).  



 
 

 
(a) Artist’s Impression of the Coupled Spherical 

Cavities with Central Tuning Cell.   

 
(b) Electric Field Magnitude of the TE011 Mode. Note the 

Alignment of the Field Axis.  
 

FIGURE 4. INFN Genoa Detector (Chincarini and Gemme, 2003). Courtesy Dr. A. Chincarini.  
 
 

BIRMINGHAM UNIVERSITY DETECTOR  
 
The detector designed at Birmingham University, England, uses a resonant microwave loop-shaped chamber in 
which the interaction between HFGWs and the polarization vector of an EM wave is such that the polarization 
vector rotates about the direction of EM propagation (Cruise, 2000). When a resonance condition is established, the 
EM wave always experiences the same phase as the HFGW. The effect is cumulative and can be enhanced linearly 
by repeated EM circuits of a closed loop or waveguide. This detector essentially measures the curvature of space-
time and a prototype detector was fabricated by R. Ingley at Birmingham. The loop is about 1m in length and can 
detect 200MHz HFGWs. Although the prototype dimensions are roughly 1m, the dimensions could be easily 
reduced in size to about 6cm for HFGW detection at 4.9GHz. The smaller the loop dimensions, the higher the 
gravitational-wave frequency that can be detected.  
 
 

DETECTING GENERATED HFGWS USING AVAILABLE DETECTORS  
 
Using flux compression by a HTSC lens, the HFGW flux produced by the generating arrangement described above 
is much greater than the detection limits of both the INFN Genoa and the Birmingham University detectors and 
should be easily detectable. These detectors, however, may not be quite sensitive enough to detect the 
corresponding flux generated in free space. At very little extra expense, the circle radius could be increased to 3km, 
giving a HFGW flux 10µW m–2 in free space or 1.7W m–2 using a HTSC focusing lens. With doubled funding the 
number of magnetrons and FBARs might both be doubled to give 40µW m–2 in free space or 7W m–2 using a HTSC 
lens. These latter figures would be well within detection capabilities.  
 
 

CONCLUSIONS 
 
The basic generator proposed here consists of 10,000 phase-locked magnetrons, asymmetrically arranged in a circle 
of radius 300m, each producing 1kW at 2.45GHz; each supplies three FBAR wafers, each of 6,000 phase-coherent 
resonant FBARs. This produces a HFGW radiated power 250pW at 4.9GHz. Focused to a diffraction-limited spot in 
free space this corresponds to a HFGW flux of 0.1µW m–2. This is not quite within the detection capabilities of 
current HFGW detectors but increases to well within the sensitivity range if HTSC is used to reduce the HFGW 
wavelength and hence reduce the area of the diffraction-limited spot, and/or if the circle radius is increased to 3km.  
 
 

NOMENCLATURE 
 
 A = cone altitude (m)  c = speed of light (m s–1) 



 
 

 f = force (N) 
 fo = maximum force (N) 
 F = GW flux (W m–2) 
 k = spring constant (N m–1) 
 Q = resonance quality factor  
 m = mass (kg) 
 N = number of FBARs 
 P = power (W) 
 Pin = total power available (W) 

 r = radius of gyration (m) 
 ∆t = time increment (s) 
 W = stored energy (J) 
 x = spring extension (m) 
 λ = wavelength (m) 
 ∆ν = FBAR half-resonance width (Hz) 
 ν = frequency (Hz) 
 νo = resonant center frequency (Hz) 
 ωo = resonant angular frequency (rad s–1) 
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